
6.842 Randomness and Computation March 26, 2014

Lecture 13
Lecturer: Ronitt Rubinfeld Scribe: Suthee Ruangwises

1 Lecture Overview

This lecture covers learning via Fourier coefficients. First, we will discuss examples of some functions
and their Fourier representations. Then, we will introduce the low degree algorithm and its applications.

2 Examples of Functions and Fourier Representations

Example 1: Consider the AND function on input x = (x1, ..., xk) ∈ {±1}k:

AND(x) =

{
1, if ∀i ∈ T = [k], xi = 1

−1, otherwise.

First, we “booleanize” the output (but not the input) of the AND function by defining

f(x) =

{
1, if ∀i ∈ T, xi = −1

0, otherwise.

We have

f(x) =
∏
i∈T

1− xi
2

=
∑
S⊆T

(−1)|S|

2k
χS

and

AND(x) = 2f(x)− 1

= −1 +
2

2k
+

∑
S⊆T,|S|>0

(−1)|S|

2k−1
χS .

1

Example 2: Consider the decision tree model of computation.

Figure 1: An example of a decision tree. Note that the left
branch is always −1 and the right branch is always +1.

We define a path function

fl(x) =
∏
xi∈Vl

1± xi
2

=
1

2|Vl|

∑
S⊆Vl

(−1)# left turns taken in SχS

when Vl is the set of variables visited on the path to leaf l. Note that the ± sign will be − if we visit
the left branch and + if we visit the right branch of that node.

The value of each fl(x) is:

fl(x) =

{
1, if x takes the path to l

0, otherwise.

Note that all but one of fl(x) will be zero. Therefore, we can write f(x) as

f(x) =
∑

l∈leaves

fl(x)val(l).

3 Fourier Concentration

Definition 1 For 0 < ε < 1, a function f : {±1}n → R has α(ε, n)-Fourier concentration if

∑
S⊆[n],|S|>α(ε,n)

f̂(S)2 ≤ ε.

2

Example 1: If a function f depends on at most k variables, then

∑
|S|>k

f̂(S)2 = 0.

Example 2: f = AND on T ⊆ [n] has log(4
ε)-Fourier concentration. Therefore,

• If |T | ≤ log(4
ε), then

∑
|S|≥log(4

ε)
f̂(S)2 = 0.

• If |T | > log(4
ε), then f̂(φ)2 = (1− 2Pr[f(x) 6= χφ(x)])2 = (1− 2

2|T |)
2 > 1− ε. So,

∑
S 6=φ f̂(s)2 ≤ ε.

Therefore, f has 0-Fourier concentration.

4 Low Degree Algorithm

Given degree d, accuracy τ , and confidence δ, we do the following steps:

• Take m = O(n
d

τ log(n
d

δ)) samples.

• Set cs ← estimate of f̂(x).

• Output h(x) =
∑
|S|≤d csχS(x).

We use sign(h(x)) as hypothesis for f(x) =
∑
f̂(S)χS(x). We will prove that this estimation works.

Theorem 2 If f has d = α(ε, n)-Fourier concentration, then h satisfies Ex[(h(x)− f(x))2] ≤ ε+ τ with
probability at least 1− δ.

Note that for a boolean function f , this theorem implies
∑
|S|≤α(ε,n) f̂(S)2 ≥ 1−ε by Parseval’s theorem.

Claim 3 For any set S such that |S| ≤ d, we have |cS − f̂(S)| ≤ γ for γ ←
√

τ
nd

with probability at
least 1− δ.

Proof of Theorem 2:

Assume that our claim holds. (δ probability of error did not happen.)

Define g(x) ≡ f(x)− h(x).

Since Fourier transform is linear, we have ∀S, ĝ(S) = f̂(S)− ĥ(S).

• If |S| > d, then ĥ(s) = 0, so ĝ(s) = f̂(s).

• If |S| ≤ d, then f̂(S) = cS . So ĝ(s) = f̂(S)− cS , and ĝ(s)2 ≤ γ2.

3

Therefore,

E[(f(x)− h(x))2] = E[g(x)2]

=
∑
S

ĝ(S)2(by Parseval’s theorem)

=
∑
|S|≤d

ĝ(S)2 +
∑
|S|>d

ĝ(S)2

≤ ndγ2 + ε

≤ τ + ε.

Theorem 4 For a function f : {±1}n → {±1} and h : {±1}n → R, we have Pr[f(x) 6= sign(h(x))] ≤
E[(f(x)− h(x))2].

Proof

Observe that

E[(f(x)− h(x))2] =
1

2n

∑
x

(f(x)− h(x))2

and

Pr[f(x) 6= sign(h(x))] =
1

2n

∑
x

1f(x)6=sign(h(x)).

Consider each term in the summation. We know that for each x,

• If f(x) = sign(h(x)), then (f(x)− h(x))2 ≥ 0 = 1f(x) 6=sign(h(x)).

• If f(x) 6= sign(h(x)), then f(x) and h(x) differs by at least 1, so (f(x)−h(x))2 ≥ 1 = 1f(x)6=sign(h(x)).

This completes our proof.

Therefore, we can run with τ = ε and get h such that E[(f(x)− h(x))2] ≤ ε+ ε = 2ε.

5 Applications

Application 1: Consider the bounded depth decision tree. By linearity, any f̂l(S) is 0 for all S such
that |S| > depth.

4

Application 2: We can compute any n-bit function in constant depth circuit. However, we cannot
compute parity of n bits.

Application 3: Sample query algorithm:

Theorem 5 For any function f computable via size s and depth d circuits:

∑
|S|>t

f̂(S)2 ≤ α,

for t = O(log 2s
α)d−1.

We take s = poly(n), d = constant, and α = O(ε), which gives nO(logd(nε)) sample query algorithm.

5

